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ABSTRACT

In the present paper the formal solution of certquadruple integral equations involving
Fox’s H-functions of order n is obtained by the hoet of fractional integration which is
extension of dual integral equations considere&dy[5]. Here by the application of
fractional integration operators, the given quatiwgguations are transformed into other
guadruple equations with a common kernel and thblem then reduced to that of solving
one integral equation.

KEYWORDS: 45F10 Quadruple integral equations, 45H05 Speaah&ls (Unsymmetric
Fourier Kernel), 44A15 Special Transforms (Mellirmmsform), 33C60 Fox’s function,
33CXX Hypergeometric functions, 26A33 Fractionatidatives and integrals, 44A20
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INTRODUCTION

Fox,C 19l defined the H- function of order n as follows:
(x|ai' Elli:n): H (x “1 Ell1: o2 E|I2: “n- a“)
H VB aj B1, a1 B2, az Bn. an

_1_ n T'(og 1 3a4) —=3
i e Hi:l{f(ﬁi— saﬂ} X s [1.0]

We assume that the following conditions are Satlssome of these conditions are
necessary and some serve to simplify the problem:

(). g, 04, Bi are allreal ,i=1,2,......... n.

(iaj=>0, i=12,.....,1n

(iii). Lets =g + it , where g and t are real ; then the contour C along which the
Integral [1.0] is taken, is the straijhe whose equation i@ = oy where

a() is a constant. This line is parallel to the imagynaxis in the complex s

Plane.

(iv). All the poles of the integrand of [1.0leasimple and lie to the left of



the Lines = oy. This requireso = - oj/g;, 1= 1,2,.......... .
Together with these conditions we regeither (va) or (vb) below :
(va)20 T, aj <L, (Bi — «),
(vb).260 IR, a; <, (B — o) - L.

The integral [1.0] , taken along the lioe= oy, converges if condition (va) holds and

converges absolutely if condition (vb) holds. Ttes be verified by using the asymptotic
expansion of the Gamma function.

The asymptotic expansion also showsttieatontour C of [1.0] can be closed by a
large semicircle on the left. On computing thedaes we then find that the H function of
order n can be expressed as the sum of n powessahe 'l of which is multiplied by x

ai/aj , Each of these power series is an entire function

The quadruple integral equations we amarshere are as follows :

ICH (ux | Ei R :n) fudu=v1(x),  xC (0.a) [1.1]
By
[°H (ux (A n) fu)du=¥2 (x),  x€ (a,b) [1.2]
M @
[H (ux | '::l‘ zl : n) fuydu=ba (x),  x€ (b) [1.3]
\ 1 1
J, H (ux | Ao, n) f(u) du =¥4 (x) X€ (C,0) [1.4]
M3

Where0 < a < 1land 1 < ec<and®1 (x), ¥2 (x), ¥al) and¥s (x) are

prescribed functions and f(x) is to le¢edmined here.
the constantg,a1,2,............... ,n, are the same for the equations
[1.2], [2.3] and [1.4].

We assume that the H function of [1dt]sies the five conditions
above and that the H function of [1.4] satisfiessth conditions witl$; replaced byp; and
that H function of [1.4] satisfies these conditiavith ot; replaced byd; and[3; replaced by

Hi,i=12,..........,n We also assume that a commdnevef g, can be found for all
H functions involved in these equations.



RESULTS USED IN THE PROOF OF THESEQUEL
Mellin Transform: We make much use of the Mellin transform. We

denote the Mellin transform of f(u) by {fi{{u)} = F(s). Formally we have

M{f(w)} = F(s) = [, f(wu*du 2.1]

Inverse Mellin Transform: If M {f(u)} = F(s) we shall write
f(u)= M_l{F(sj} and inverse Mellin transform is defined as

M HF) = W) == [F8) x ds 2.2]

mi
where the contour C, in [2.2] is usually a sthaigne parallel to the
imaginary axis in the complex s@=+ it) plane, with equatiog = oQ-
Parseval’'s Theorem for Mellin Transform:
If M {a (u)} =A(s) and M {f (u)} =F(s)
Then

[ a(w) f(u)du= % [. A(®)F(1 — s)ds 2.3]

Again the contour C is some straight line whoseaéiqu is of the formy = a.

From [2.1] or [2.2] it is easy to deduce that (ifX) is considered to be a function

of u with x as a parameter, where x > 0, then

M{f(ux)} =x MEWI=x ° F(s) [2.4]
From [2.4] and [2.3] we may deduce that

fum a(ux)f(u)du :i _,f: A(s]x_s F(1-s)ds [2.5]

and this is the form in which we shall use thesB@al theorem here.
Conditions for the validity of [2.1], [2.2] and.[& can be found in [10.88 1.29, 3.17 and 4.14].

From [1.0] and [2.2] we may infer that



M

% 3, )| o, Pl esay)
H(ulBi, a-'n)l_ izl{r{ﬁi—mi}} [2.6]

and this follows from [1.0] if condition(vb) of §iolds [10, Theorem 29, p. 46].
It may still be true, however, if only conditionalvholds
Fox’s Beta Formulae
Fox defined Beta formulae by following fractionategrals:
cl'(d—e)l(e—cs) d_1
Xc ¢
I'(d — cs)

-5

* e
f (xlfc _ L;lfw:')d—e—l UE_S_ldU —
1]

[2.7]
Provided d>e and>c where s=+itand 0 < x < 1
c
f (wi/e — xi/eyi-et 1;% _ cEi_S_ gy cl'(d — e)l'(e +cs) x‘% s [2.8]
. I'(d + cs)
Provide d>e and>g where s=+it and x >1
Fractional Erdelyi-Kober Operator:
Fox used the following generalized Erdelyi-Kobeetors:
m + 1 : 1 [2.9]
Tly,e: ml{f(x)} = r—x“'”m“ me (x™ —u™)Y~* v*f(v)dvu
Y 0
Where O<x <1
[2.10]

R[y,e: m] {f(x)} = %:{EI (U™ —x™)Y-ly—evmim-l fiidy

Where x > 1

The operator T exists. If f(2L,(0,00) , p>1 ,y>0 ande> (1 — p)/p and If , f(x) can be
differentiated sufficient number of times then tpeerator T exists for both negative and
positive value of. The operator R exists. If f(&Lp(O,m), p=1 and If, f(x) can be

differentiated sufficient number of times then dperator R exists. If me>—1 /p whiley
can take any negative or positive value.



3. Solution of quadruple integral equations:On using M{f(u)] = F(s) we may apply the

Parseval theorem [2.5] to integral equations [113], [1.3] and [1.4] and from [2.6], rewrite
these equations in the form

— I {%}x_%(m) ds %1 (x) , xe (0,2) 3.1]
= [, T {%}x_sm-s) ds %2 (x), xe (@.b) 3.2]
3.2]

N {%}X_Sm—s) ds %3 (x), x= G.0) [3.3]
prd 1 9 {%}X_SF(M) ds b4 (x) , X< (co0) 3.4]

We assume that the contour C is the same strimght = a(y for all

[3.1], [3.2] , [3.3] and [3.4].

[3.1], [3.2] , [3.3] and [3.4] can be deduced friri], [1.2] , [1.3] and [1.4] only if we
knowSomething about the properties of f(x) andesinkese are not known at presentwe must
proceed formally. The method used here works maséyewith [3.1],[3.2] , [3.3] and [3.4]

than with [1.1], [1.2] , [1.3] and [1.4].

Now in integral equation [3.1] replacing x by v amdltiplying both sides of equation [3.1]
by (xbﬂ — vbﬂ) Mn— Bn—1 PnPn—1 here

bh = 1 /an and integrating both sides of integral equati@g][with respect to v from 0 to

x where x€ (0,§) and applying well known Fox’s Beta formula [2i]lequation [3.1],

_B

under the conditions of convergerpg > 3y, and , By, = n/a >a( (s =op +itonthe
n

line o = o). When fractional integration is introduced thistfiof these conditions may no
longer be necessary and the second may be reldvezdywe get

2 oo o)) o) -

s
n- X F(1-s) ds
=1 |7(pi—sep)) Mo sam) © OO

2mi

_bn kp + bI] J:E QUOTE E BEE8 yq@)dv

bIl

= —2—x
r{!-ln_ﬁn}

Where 0 < x < 1 andp= 1/3 . [3.5]
Il

We use the Erdelyi- Kober operator T from [2.9nuation [3.5] , for brevity we



write T[p; — B;, biBi— 1:bi] {1 (0} = T; {¥1 ()},

b; = l/ﬂi =123 e, n. and & (0,a) [3.6]

Then T[ay — B bpBn— Libp]{¥1 (0} =T, {¥1 0}, x€(0a) [3.7]

Hence from [3.7] , the integral equation [3.5] denwritten as

= [ I {r{“ ”‘“}} Mayt san) =S g ds =T, {¥1 ()} X € (0,8) [3.8]

2mi r{ﬁl :.'al} r"l[,un san}l
Now repeating the same process in integral equfdi&j for i= n-1, n-2,........ ,3,2,1.

Then the equation [3.8] takes the form

i_,r n {I"{afl-+sa1-}

AL 1 I'{,ul-—sal-}

}X_SF(l—s) ds =ITL, T; {#¥1 (X)}; x € (0,a) [3.9]
Now again in integral equation [3.4] replacing yxwand multiplying both

sides of the equation [3.4] bQFhﬂ - xbﬂ)’lﬂ —an—1ybn— ndn—1

where b = 1 /a as before and integrating both sides of integyabéon [3.4] with
n

respect to v from x te where x€ (¢, ) and applying well known Fox’s Beta formula [2.8]
in equation [3.4] under the condition of convergent,, > a,, at the lower limit and a
no + uy > 0 atthe upper limit. But when the fractionakigration operator R is

introduced some of these conditions may no longandcressary.
Hence , as beforeg is the real part of s and also x > 0, then we get,

EN {{a ctea, }}r{an+ x) =5 Fre) ds

2mi ~(ur sar)) rlpn—san)

e (v n_ xf?n)ln— an—1 \bn = bndn =Ly, o) av

Lﬂn a’n}
[3.10]

t th ithx > 1 = .
ogether with x and,b a,
Now using the Erdelyi- Kober operator R from [2.10the equation [3.10] for brevity
We write R[A; — i, biaj: bi] {¥s @} =R;{¥4 )}, x € (c,»).  [3.11]
together with lf):l/ ,1=1,23, e, T

aj



Then R[4, — @y, bpay tby] (%8 0} =R, {¥4 ()} , x€(,0) [3.12]
together with by :l/a .
T

Hence from [3.12] the integral equation [3.9] cawritten as

1 n— P{.?ll-+sa1-} P{af,ﬂ+3a,ﬂ} —5 _
2mi Ve I=ll{r{m-mal F(an—san) < T(18) 05 = B{¥a (Ohx €(C o) [3.13]

together with b =1 a
n

Now repeating the same process in integral equfdid3] fori=n-1,n-2..................
......... ,3,2,1.then the equation [3.13] takes the form

i I H?zl{%}x_sﬂl—s) ds = =T, R; {¥s (0} x €c )  [3.14]

Now the integral equations [3.1], [3.2] , [3.3] di84] are transformed into three other
integral equations [3.9], [3.2] , [3.3] and [3.1¥ving common kernel.

Now we set

E QUOTE B EEE {y1(x)}; x€ (0,aE QUOTE B E &)

Wz (=), xC{ab)
P3(x), x€(bc)
. B QUOTE B BEE {4 4(x)},x € (c,==E QUOTE E B &)
pXx) =
[3.15]

Then integral equations [3.9], [3.2], [3.3] andl#. can be put in to the compact form as

gl ) 0 {M}x_sm-s) ds = p(x) [3.16]

2mi rlpj—sa;)

In order to solve [3.16] for f(x) = Ml[F(s]] , using the terminology of § 2.

For this purpose we use the generalized Fouriastoam which consists of the reciprocity
¢(x) = [, p(ux)f(Wdu [3.17]

f(x) = fﬂmq[ux] ¢(wdu [3.18]

The functions p(x) and q(x) are known as the keraeld the transformation is said to be
symmetrical if p(x) = q(x) and unsymmetrical othesev A full and detailed account of this
transform is given in [10, Chapter 8, especialB.g).



Not every pair of functions can form the kerndla ¢ransform such as [3.16], [3.17]. With
the Mellin transform notation of 8§2 let[{p ()] = P(s) and Mig()] = Q(s). Then among

the conditions required for the validity of [3.173.18] is the satisfaction of the functional
equation

P(s) Q(1-s) = 1 [3.19]

In addition to this P(s) and Q(s) must be boundetragular in certain

Strips of the complex s-plane to the imaginary axid also f(x) oxp(x) must belong to L

p (0, ) for some p= 1. Since our method is formal we need considéi93only here.

We apply the Parseval theorem, [2.5] of 82 to tflet— hand sides of [3.17] and [3.18].
Writing M[f(w)] = F(s),
From [3.17] we obtain
1 —8
¢ =5 ,fc P(s)x "F(1-s)ds [3.20]

Also , on writing M ¢ (1) ] = ¢b(5) and using [3.19] we deduce from [3.18] that

——— 1 F _
f(x) = omide s X ¢(1— s)ds. [3.21]

Hence, if P(s) angh(x) are known in [3.20] we can solve for f(x) :_NF[F(S]] by means
of equation [3.21].

On applying this idea to [3.16 ] and writingl&x)] = P(s) we deduce that

) =— T, {M} x “P(1-s) ds [3.22]

2mi P{afﬁ a;—sai}

This is the formal solution of [3.9], [3.2], [3.8hd [3.14] and many important properties of
f(x) can be deduced from it. But, by using the Beattheorem [2.5] of §2, we can transform
the integral of [3.22] so that the equation takesform

"“ ( Iﬁ_ o e )
J; Hfux _ :p | PU) du
f(x) = @t a, g [3.23]



where p(x) is given by [3.15]. From conditions (and (va) of § 1 the H

function of [3.23] exists if we can find a constany such that

o3> — K, i=12,............. N, and@ﬂzi“:lai<2?:1(zai+ o = Ui)-

The solution [3.23] when written out in full becem

J; H{ux ‘n n .
f(x) = ot a, @ mi = 1/ iy1elau
b i— ﬂ’!:' ﬂ-i c i— ﬂ’!:' ﬂ’!:
I H| ux :n ﬂlg{u]du+J; H| ux s JWg (Wdu
[} it + aj, o o + @i, aj

o (5] . sy .
I H(ux |” o n)nl. ™ Rifa)du
e o+ ai, g [3.24]

If in equations [1.1], [1.2] [1.3] and [1.4] & replaced by 1 and c is replaced by 1 and in
equation [1.1] on right hand side the functin (x) is replaced by the function g(x) and in

equation [1.4] on right hand side the functia (x) is replaced by the function h(x) and we
take a=b =c =1 then the quadruple integrahéigns [1.1], [1.2], [1.3] and [1.4] are
reduced to the dual integral equations [1.5] an@][@arlier considered by Fox[5, equations
(6), (7), pp- 390] and the solution of

fum H (ux | %A : n) fluydu=g(x), 0<x<1 [1.5]
Bi 3
[H (ux | Ao, n) fuydu=he), x>1 [1.6]
Hi g
. ) L — 2, a o
s Tl H(ux I-:x:+ ai a; | n) i Tigg(w1 du
= S T n .
+ fl H (ux I.:x:—|— ali, a: ; 11) [T~ Rifh(uw)} du [3.25]

Fox has given the relation between the H functiborder 1 and Bessel function [5, Relation
(5), pp. 390] as follows

o,
H| x|

B,

: 1 —Zxa_ﬁ+]fa+,8—1(2x),

[ I I oS I



Where | denotes a Bessel function.

Fox[5,reduced (6) and (7) by using relation (5) whe1,pp. 390 to (1) and (2) as a very
special case,pp.389 |

In the case when n=1 we can compare our restiitkmown solutions of (1), (2).

A solution of (1), (2) for the cage = 0 is given by Peters,[9, equations(3.1), (3pP)/]
and the solution is given by [9, (3.8), pp.10].

On writing n=1,a1= %, a1= (u+ )2, f1= (0 — w+2}/2,A1=v/2 and

= (v + 2)/2in [3.24] we obtain a formula which agrees comaietvith Peter’s (3.8 ) of

[9]. Our method is formal, however, and so doesgia conditions for the validity of the
solution.
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