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ABSTRACT  

In the present paper the formal solution of certain  quadruple integral equations involving 
Fox’s H-functions of order n is obtained by the method of fractional integration which is 
extension of dual integral equations considered by Fox [5]. Here by the application of 
fractional integration operators, the given quadruple equations are transformed into  other 
quadruple equations with a common kernel and the problem then reduced to that of solving 
one integral equation.  

KEYWORDS: 45F10 Quadruple integral equations, 45H05 Special Kernels (Unsymmetric 
Fourier Kernel), 44A15 Special Transforms (Mellin Transform), 33C60 Fox’s function, 
33CXX Hypergeometric functions, 26A33 Fractional derivatives and integrals, 44A20 
Transforms of special functions, 45E99 Suitable contour Barnes type. 

                                                 INTRODUCTION   

  Fox,C. [1965] defined the H- function of order n as follows: 

H     

                              =   ds                                                                           
                                              

[1.0] 

  

 We  assume that the following conditions are satisfied; some of these conditions are 
necessary and some serve to simplify the problem: 

 (i). a  are all real , i= 1,2,………,n. 

(ii). a  

(iii). Let s =  , where   are real ; then the contour C along which  the 

          Integral  [1.0] is taken, is the straight line whose equation is  =  where 

           is a constant. This line is parallel to the imaginary axis in the complex s 

          Plane. 

 

  (iv). All the poles of the integrand  of [1.0] are simple and lie to the left of  



         the Line  This requires   - /a  , i = 1,2,……….,n. 

           Together with these conditions we require either (va) or (vb) below : 

(va).2 <   

(vb).2 <  - 1. 

  The integral [1.0] , taken along the line  , converges if condition (va) holds and 

converges absolutely if condition (vb) holds. This can be verified by using  the asymptotic 
expansion of the Gamma function. 
 
          The asymptotic expansion also shows that the contour C of [1.0] can be closed by a 
large semicircle on the left. On computing the residues we then find that  the H function of 
order n can be expressed as the sum of n power series , the ith of which is multiplied by  x

 , Each of these power series is an entire function. 

          The quadruple integral equations we consider here are as follows : 

           f(u) du = (x) ,          x Є  (0,a)                       [1.1]  

          f(u) du = (x) ,     x Є (a,b)                              [1.2]  

           f(u) du =  (x) ,          x Є (b,c)                        [1.3]  

            f(u) du = (x) ,          x Є (c,∞)                      [1.4]  

          Where0 < a < 1and 1 < c < ∞ and (x), (x),  and (x) are   

           prescribed functions and f(x) is to be determined here. 

           the constants a i=1,2,……………,n, are the same for the equations   

           [1.2], [1.3] and [1.4]. 

           We assume that the H function of [1.1] satisfies the five conditions  
above and that the H function of [1.4] satisfies these conditions with  replaced by  and 

that H function of [1.4] satisfies these conditions with  replaced by  and  replaced by 

 , i = 1,2,……………,n. We also assume that a common value of    can be found for all 

H functions involved in these equations. 



 

                    RESULTS USED IN THE PROOF OF THE SEQUEL 
 
Mellin Transform: We make much use of the Mellin transform. We  

denote the Mellin transform of f(u) by M  = F(s).  Formally we have 

                                                                          [2.1]                                          

 

Inverse Mellin Transform: If M  = F(s) we shall write 

  f(u)= M  and inverse Mellin transform is defined as 

   M  = f(u) = x                                                                [2.2] 

  where the contour C, in [2.2] is usually a straight line parallel to the 

  imaginary axis in the complex s(= ) plane, with equation  = . 

Parseval’s Theorem for Mellin Transform: 

If M {a (u)} =A(s) and M {f (u)} =F(s) 

Then 

                                                                  [2.3] 

Again the contour C is some straight line whose equation is of the form . 

From [2.1] or [2.2] it is easy to deduce that  if f(ux) is considered to be a function 

of u with x as a parameter, where x > 0, then        

M  x  = x  F(s)                                                                              [2.4] 

 From [2.4] and [2.3] we may deduce that 

  =   F(1-s)ds                                                                  [2.5] 

  and this is the form in which we shall use the Parseval theorem here. 

 Conditions for the validity of [2.1], [2.2] and [2.3] can be found in [10.§§ 1.29, 3.17 and 4.14]. 

From [1.0] and [2.2] we may infer that 



M  =                                                                          [2.6] 

and this follows from [1.0] if condition(vb) of §1 holds [10, Theorem 29, p. 46]. 

It may still be true, however, if only condition (va) holds  

Fox’s Beta Formulae:   

Fox defined Beta formulae by following fractional integrals: 

                              [2.7]      

 

                      

                                                                                   

 Provided d>e and >� where s= �+it and 0 < x < 1 

 

                          [2.8] 

   Provide d>e and >� where s= �+it and x >1 

Fractional Erdelyi-Kober Operator: 

Fox used the following generalized Erdelyi-Kober operators: 

 

[2.9] 

Where 0< x < 1 

 

                         [2.10] 

Where x > 1 

The operator T exists. If f(x) (0, ) , p>1 , �>0 and �>  and If , f(x) can be 

differentiated sufficient number of times then the operator T exists for both negative and 
positive value of �. The operator R exists. If f(x) (0, ), p 1 and If, f(x) can be 

differentiated sufficient number of times then the operator R exists. If m > � >  while � 
can take any negative or positive value. 



3.  Solution of quadruple integral equations: On using M  = F(s) we may apply the 
Parseval theorem [2.5] to integral equations [1.1] [1.2], [1.3] and [1.4] and from [2.6], rewrite 
these equations in the form 

 x F(1-s) ds = (x) , x ∊ (0,a)                                  [3.1] 

 x F(1-s) ds = (x) ,  x ∊                                 [3.2]                                                                  

[3.2] 

x F(1-s) ds = (x) ,  x                                 [3.3] 

x F(1-s) ds = (x) , x ∊ (c,∞                                  [3.4]                                                                                                  
  

We assume  that the contour C is  the same straight line   for all 

[3.1], [3.2] , [3.3] and [3.4]. 
[3.1], [3.2] , [3.3] and [3.4] can be deduced from [1.1], [1.2] , [1.3] and [1.4] only if we 
knowSomething about the properties of f(x) and since  these are not known at presentwe must 
proceed formally. The method used here works more easily with [3.1],[3.2] , [3.3] and [3.4] 
than with [1.1], [1.2] , [1.3] and [1.4]. 

Now in integral equation [3.1] replacing x by v and multiplying both sides of equation [3.1] 

by  where  

b   and integrating both sides of integral equations [3.1] with respect to v from 0 to 

x where x Є (0, ) and applying well known Fox’s  Beta formula [2.7] in equation [3.1],  

under the conditions of convergence  >  and b   = >  (s =  on the 

line ). When fractional integration is introduced the first of these conditions may no 

longer be necessary and the second may be relaxed, then we get 

  x  F(1-s) ds 

=    x   

Where 0 < x < 1 and b  .                                                                          [3.5] 

We use  the Erdelyi- Kober operator T from [2.9] in equation [3.5] , for brevity we 



Write   T  { (x)} = T  { (x)}, 

b  =   ,      i= 1,2,3,…………………..,n.     and  x  Є (0,a)                                [3.6]     

Then    T  { (x)} = T  { (x)} , x Є (0,a )     [3.7] 

Hence from [3.7] , the integral equation [3.5] can be written as 

  x  F(1-s) ds = T  { (x)} ,x Є (0,a)    [3.8] 

Now repeating the same process in integral equation [3.8] for i= n-1, n-2,……..,3,2,1. 

Then the equation [3.8] takes the form 

x F(1-s) ds =   { (x)} ; x Є (0,a )              [3.9] 

Now again in integral equation [3.4] replacing  x by v and multiplying both 

sides of the equation [3.4] by   v  

where   b   as before and integrating both sides of integral equation [3.4]  with 

respect to v from x to ∞ where x Є (c , ∞ ) and applying well known Fox’s Beta formula [2.8] 
in equation [3.4] under the condition of convergence   >  at the lower limit and a

 > 0 at the upper limit. But when the fractional integration operator  R is 

introduced some of these conditions may no longer be necessary. 
Hence , as before ,  is the real part of s and also x > 0, then we get, 

  x  F(1-s) ds  

  =   x  . v  (v) dv              

                                                                                                                                      [3.10] 

 together with x > 1 and b  = . 

Now using the Erdelyi- Kober operator R from [2.10] in the equation [3.10] for brevity 

We write  R  { (x)} = R { (x)} , x Є (c , ∞).       [3.11]   

together with   b =   . 



Then  R  { (x)} = R { (x)}  ,  x Є (c , ∞ )      [3.12] 

together with  b   =   

 
 
Hence from [3.12] the integral equation [3.9] can be written as 

  x F(1-s) ds =  R{ (x)},x Є(c ,∞)   [3.13] 

together with  b   =   .                

Now repeating the same process in integral equation [3.13] for i= n-1,n-2………………  
.……..,3,2,1.then the equation [3.13] takes the form 

x F(1-s) ds =  =   { (x)} ,x Є(c ,∞)       [3.14] 

Now the integral equations [3.1], [3.2] , [3.3] and [3.4] are transformed into three other 
integral equations [3.9], [3.2] , [3.3] and [3.14] having common kernel. 

Now we set 

p(x) =                                                              
[3.15] 

Then integral equations [3.9], [3.2], [3.3] and [3.14] can be put in to the compact form as 

x F(1-s) ds = p(x)                                                       [3.16] 

In order to solve [3.16] for f(x) = M  , using the terminology of  § 2. 

For this purpose we use the generalized Fourier transform which consists of the reciprocity 

                                                                                     [3.17] 

f(x)  =                                                                                       [3.18] 

The functions p(x) and q(x) are known as the kernels and the transformation is said to be 
symmetrical if p(x) = q(x) and unsymmetrical otherwise. A full and detailed account of this 
transform is given in [10, Chapter 8, especially § 8.9]. 



 

Not every pair  of functions can form the kernels of a transform such as [3.16], [3.17]. With 
the Mellin transform notation of  §2 let M  = P(s) and M  = Q(s). Then among 
the conditions required for the validity of  [3.17], [3.18] is the satisfaction of the functional 
equation 

P(s) Q(1-s) = 1                                                                                                        [3.19] 

 

In addition to this P(s) and Q(s) must be bounded and regular in certain 

Strips of the complex s-plane to the imaginary axis and also f(x) or  must belong to L

 for some p ≥ 1. Since our method is formal we need consider [3.19] only here. 

 

We apply the Parseval theorem, [2.5] of §2 to the right – hand sides of [3.17] and [3.18]. 
Writing M  = F(s),  

From [3.17] we obtain 

 =  x F(1-s) ds                                                                         [3.20] 

Also , on writing M  =  and using [3.19] we deduce from [3.18] that 

f(x) =   x  ds.                                                                  [3.21] 

 

Hence, if P(s) and  are known in [3.20] we can solve for f(x) = M  by means 

of equation [3.21]. 

 

On applying this idea to [3.16 ] and writing M   = P(s) we deduce that 

f(x) =  x P(1-s) ds                                                [3.22] 

 

This is  the formal solution of [3.9], [3.2], [3.3] and [3.14] and many important properties of  
f(x) can be deduced from it. But, by using the Parseval theorem [2.5]  of §2, we can transform 
the integral of [3.22] so that the equation takes the form 

f(x) =  [3.23] 



where p(x) is given by [3.15]. From conditions (iv) and (va) of  § 1 the H  

function of [3.23] exists if we can find a constant  such that  

 > a  , i = 1,2,………….,n, and 2  < . 

The solution [3.23]  when written out in full becomes 

f(x) = 

 

 П + 

 

+                                    [3.24] 

 

If in equations [1.1], [1.2] [1.3] and [1.4]  a  is replaced by 1 and  c is replaced by 1 and in 

equation [1.1] on right hand side the function (x) is replaced by the function g(x) and in 

equation [1.4] on right hand side the function (x) is replaced by the function h(x) and we 
take a = b  = c  = 1 then the quadruple integral equations [1.1],   [1.2], [1.3] and [1.4]  are 
reduced to the dual integral equations [1.5] and [1.6] earlier  considered by Fox[5, equations 
(6), (7), pp. 390] and the solution of   

          f(u) du = g(x) ,   0 < x < 1                                 [1.5]  

          f(u) du = h(x) ,        x > 1                                    [1.6]  

is       f(x) =  

                       +                     [3.25]               

                                                    

Fox has given the relation between the H function of order 1 and Bessel function [5, Relation 
(5), pp. 390] as follows 

  H  2x (2x), 



Where  denotes a Bessel function. 

Fox[5,reduced (6) and (7) by using relation (5) when n=1,pp. 390 to (1) and (2) as a very 
special case,pp.389 ] 

In the case when n=1 we can  compare  our result with known solutions of (1), (2). 

A solution of (1), (2) for the case  = 0 is given by Peters,[9,  equations(3.1), (3.2),pp.7] 
and the solution is given by [9, (3.8), pp.10].  

On writ ing n=1, = ½, = /2, =  = /2 and 

=  in [3.24] we obtain a formula which agrees completely with Peter’s (3.8 ) of 
[9]. Our method is formal, however, and so does not give conditions for the validity of the 
solution. 
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