SIMULTANEOUS QUADRUPLE SERIES EQUATIONS INVOLVING HEAT POLYNOMIALS

Singh¹, Anjana and Mathur², P. K.

1.Dept. of Mathematics, Rajeev Gandhi Engineering College, Bhopal, (M.P.), INDIA

2.Dept. of Mathematics, Saifia Science College, Bhopal, (M.P.), INDIA

ABSTRACT

In the present paper an exact solution of the simultaneous quadruple series equations involving heat polynomials $P_{n,\nu}(x, t)$ is given. We have also shown the solution of the simultaneous quadruple series equations involving generalized Laguerre polynomials as a special case of the equations considered in the present paper.

KEYWORDS: Simultaneous quadruple series ,equations, polynomials

INTRODUCTION

In the present paper, we consider the following simultaneous quadruple series equations:

$$\sum_{n=0}^{\ell} \sum_{j=1}^{s} a_{ij} \frac{A_{nj} t^{-n_i} (^{-n_i}}{(((+\frac{1}{2} + n_i + p))} \text{ nd using (2.3)to (2.5), we find}$$
[1.1]

$$\begin{pmatrix} \sum_{j=1}^{s} \mathbf{b}_{ij} & \mathbf{A}_{nj} \\ \frac{\mathbf{A}_{nj}}{(\left((+\frac{1}{2}+n_{i}+p\right))} & \mathbf{n} \end{bmatrix} \\ \mathbf{n} = \mathbf{o} & \sum_{i=1}^{n} & \mathbf{u} \text{ sing } (2,3) \text{ to } (2,5), \text{ we find} \end{cases}$$

$$[1.2]$$

$$\begin{pmatrix} \sum_{j=1}^{s} \mathbf{b}_{ij} \frac{\mathbf{A}_{nj}}{\left(\left((+\frac{1}{2}+n_{i}+p\right)\right)} \end{pmatrix} \mathbf{nd}$$

$$\mathbf{n} = \mathbf{o} \qquad \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$$

$$\begin{pmatrix} \sum_{j=1}^{2} c_{ij} \frac{A_{nj}}{\left(\left((+\frac{1}{2}+n_{i}+p\right)\right)} \end{pmatrix} \text{nd} \qquad [1.4]$$

$$n = o \qquad \sum \qquad \square \text{ using (2.3)to (2.5), we find}$$

Where i = 1,2,....,s.

Where, fi (x, t), ϕ i (x, t), Ψ i (x, t) and gi (x,t) are prescribed functions for $t \ge \rho > o$ and a ij, bij, cij are known costants and sequence { A=(@n=(@j)))=(@) is to be determined.

)nd using (2.3) to (2.5), we find (x, t) is the heat polynomials (Haimo, 1966) defined by

$$\mathbf{P}_{\mathbf{i}}(\mathbf{n}, \quad "(") (\mathbf{x}, \mathbf{t}) = \sum_{\mathbf{i}} (\mathbf{k} = \mathbf{o})^{\dagger} \mathbf{n} = \mathbb{I} \ 2 \ \mathbb{I}^{\dagger} 2 \mathbf{k} \ (\blacksquare (\mathbf{n} @ \mathbf{k})) \ (" (" (" (" + 1/2 + \mathbf{n}))/"([1.5])) = \sum_{\mathbf{i}} (\mathbf{k} = \mathbf{o})^{\dagger} \mathbf{n} = \mathbb{I} \ 2 \ \mathbb{I}^{\dagger} 2 \mathbf{k} \ (\blacksquare (\mathbf{n} @ \mathbf{k})) \ (" (" (" (" + 1/2 + \mathbf{n}))/"([1.5])) = \sum_{\mathbf{i}} (\mathbf{k} = \mathbf{o})^{\dagger} \mathbf{n} = \mathbb{I} \ \mathbb{I} \$$

It may be noted that $\mathbf{P}_{\mathbf{n},\mathbf{0}}(x, t) = v_{2n}(x,t)$ is the ordinary heat polynomial of even order defined by Rosenbloom and Widder (1959) and that

Pn.0 (x, -1) = (-1)ⁿ. 2^{2n} (n)! $L_n^{-1/2}(\overline{4}) = H_{2n}(\overline{2})$, the Hermite polynomial of even order defined by Erdelyi (1953).

We also define

$$W_{n,\nu}(x,t) = t^{-2n} G_{\nu}(x,t) P_{n,\nu}(x,-t), t > 0$$
[1.6]

Where,
$$G_{\upsilon}(x,t) = (2t)^{-\upsilon - 1/2} \exp((-x^2/4t)),$$
 [1.7]

and $W_{n,\upsilon}(x,t)$ is the Appell transform of $P_{n,\upsilon}(x, -t)$.

The analysis is purely formal and no attempt is made to supply details of rigours proof.

CERTAIN INTEGRAL AND SERIES REPRESENTATIONS

The heat polynomial $P_{n,v}(x,t)$ is related to the generalized Laguerre polynomial by

$$\mathbf{P}_{n,[}(\mathbf{x},-\mathbf{t}) = \left([[-1)]]^n \ \mathbf{2}^{2n} \text{ (n)! } \mathbf{t}^n \ \mathbf{L}_n^{([-\frac{1}{2})} \left(\frac{\mathbf{x}^2}{4\mathbf{t}}\right).$$
[1.8]

Using the orthogonality relation for $\mathbf{L}_{\mathbf{n}}^{(\alpha)}$ (x), it can easily be verified that for t>0,

 $\int_{\mathbf{I}} \mathbf{O}^{\dagger} (\equiv \mathbf{I} \times \mathbf{I}_{\mathbf{I}} (\mathbf{m}, \mathbf{C}) (\mathbf{x}, \mathbf{t}) \mathbf{P}_{\downarrow} (\mathbf{n}, \mathbf{C}) \mathbb{I} (\mathbf{x}, -\mathbf{t}) \mathbf{d} \mathbf{R} (\mathbf{x}) = \mathbb{I} \delta \mathbb{I}_{\downarrow} (\mathbf{m}, \mathbf{n}) \mathbb{I} \mathbf{k} \mathbb{I}_{\downarrow} (\mathbf{n}),$ [1.9]

Where

d R (x) =
$$2^{1/2-\nu} [\Gamma(\nu+1/2)]^{-1} . x^{2\nu} dx$$
 [1.10]

and

$$K_{n} = \frac{\left(\left(\left(+\frac{1}{2}\right)\right)\right)}{\left[2^{4n}(n)!\left(\left(\left(+\frac{1}{2}+n\right)\right)\right)\right]}$$
[1.11]

Now, using the formula (27), pp. 190 of Erdelyi^[1] in the form

$$\left(\frac{\mathbf{d}}{\mathbf{d}\mathbf{x}}\right)^{m}\left\{\mathbf{x}^{\alpha+m} \mathbf{L}_{n}^{(\alpha+m)}(\mathbf{x})\right\} = \frac{((\alpha+m+n+1))}{((\alpha+n+1))} \mathbf{x}^{\alpha} \mathbf{L}_{n}^{(\alpha)}(\mathbf{x}), \quad [1.12]$$

and from the relation [1.8], we obtain at once that

$$\left(\frac{d^2}{dx^2}\right)^m \left\{ x^{2(+2m-1)} P_{n,(+m)}(x,-t) \right\}$$

$$=\frac{\left(\left(t+\frac{1}{2}+m+n\right)\right)}{\left(\left(t+\frac{1}{2}+n\right)\right)}\left(x^{2}\left(-1\right)P_{n,(-)}(x,-t)\right)$$
[1.13]

The relation

$$\mathbb{L} \in \mathbb{J}^{\dagger}(\mathbf{x}) L_{\mu} n^{\dagger}((\alpha)) (\mathbf{x}) = \mathbb{L} (-1) \mathbb{J}^{\dagger} m \mathbb{L} (d/d\mathbf{x}) \mathbb{J}^{\dagger} m \{\mathbb{L} \in \mathbb{J}^{\dagger}(-\mathbf{x}) L_{\mu} n^{\dagger}((\alpha$$

together with [1.8] yields

$$(-4t)^{m} \left(\frac{d^{2}}{dx^{2}}\right)^{m} \left\{ e^{\frac{-x^{2}}{4t}} P_{n,(x,-t)} \right\} = e^{I - \frac{(x)^{2}}{4t}} p_{n,(x,-t)}$$
[1.15]

Now, we derive a few fractional integral type representations for

 $\mathbf{P}_{\mathbf{n},\mathcal{C}}(x,-t)$ and $w_{n,\upsilon}(x,t)$. Using the definition of Beta function and integrating the series for $P_{n,\upsilon}(x,-t)$ term by term with respect to x, it can easily be seen that

$$P = (@n,"(" + \beta)(\xi, -t) = 2\xi = (-2" (" - 2\beta + 1@) ("\Gamma(\beta + "(" + 1/2" + n)")/\Gamma(\beta)\Gamma("(" + 1/2 + n)]$$

$$(\beta > 0, (> -1/2)$$

[1.16]

Using the following form of the Beta function formula

$$=\frac{((1-i))((1+i))}{((1+i))} (-i)$$
[1.17]

where $\lambda > \mu$ and $s+\mu>0$ and integrating the series for $\mathbf{p}_{\mathbf{n},\mathbf{n}}(\mathbf{x},-\mathbf{t})$ term by term with respect to t, we get

$$\int_{I}(^{\dagger}(\underline{m} \mathbb{I}t^{\dagger}(-n - "(" - 1/2)(t - "(")^{\dagger}("(" - "(" - 1) \mathbb{I} p \mathbb{I}_{I}(n, "(" (x, -t)) dt = \mathbb{I})))$$

Expressing $P_{n,\nu}(x,-t)$ in terms of generalized Lagurerre polynomial by means of **[1.8]** and using the formula of Erdelyi^[2] pp. 403.

$$\int_{\mathbf{I}} (\mathbf{I} \otimes \mathbf{I} \otimes \mathbf{I}$$

It can be proved that

$$P_{1}(n, "(" - "(") ("(", -t) = 2^{\dagger}(1 - 2^{"}(") \mathbb{I} t \mathbb{I}^{\dagger}(-"(")/"("() e^{\dagger}(\mathbb{I} (")^{\dagger}2/4t))) \int_{1} (^{\uparrow}(\equiv \mathbb{I} x(x^{\uparrow}2 - (^{\uparrow}2)^{\bullet})) ((+1/2 > (>0))$$

Now, we derive certain series representation for $P_{n,\upsilon}(x,t)$. Using the generating relation to Haimo (1966).

$$(1-4zt)^{\dagger}(-"("-1/2) e_{\bullet}((e_{\bullet}(x \blacksquare (2@)@)z) / ((1-4zt))@) = \sum_{\downarrow} (n=0)^{\dagger}(\equiv \mathbb{I}(z^{\uparrow}n) / ((n)!) \mathbb{I} = \mathbb{I}(z^{\downarrow}n) = \sum_{\downarrow} (n=0)^{\dagger} (a_{\downarrow}(z^{\downarrow}n) + a_{\downarrow}(n)) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) + a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) + a_{\downarrow}(z^{\downarrow}n)) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) + a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) + a_{\downarrow}(z^{\downarrow}n)) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) + a_{\downarrow}(z^{\downarrow}n)) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n)) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n)) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n)) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n)) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n)) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} (a_{\downarrow}(z^{\downarrow}n) = \sum_{\downarrow} ($$

and the relation

$$(1-4zt)^{-\mathbf{v}} - \frac{1}{2} \mathbf{e} \frac{\mathbf{x}^2 \mathbf{z}}{\mathbf{1} - 4zt} = (\mathbf{1} - 4zt)^{-(\mathbf{v} - \mu)} (\mathbf{1} - 4zt)^{-\frac{1}{2}} - \mu \frac{\mathbf{e}^{\mathbf{x}^2 \mathbf{z}}}{\mathbf{1} - 4zt}$$

It follows that

$$\mathbf{P}_{\mathbf{n},(\mathbf{x},\mathbf{t})} = \frac{((\mathbf{n}+\mathbf{1}))}{(((-1)))} \sum_{\mathbf{k}=0}^{n} \frac{(((-(+\mathbf{n}-\mathbf{k}))(\mathbf{4}\mathbf{t})^{\mathbf{n}-\mathbf{k}})}{((\mathbf{n}-\mathbf{k}+\mathbf{1}))((\mathbf{k}+\mathbf{1}))} \cdot \mathbf{P}_{\mathbf{k},(\mathbf{x},\mathbf{t})}, \quad [1.22]$$

Equation [1.22] can be inverted to get

Equation [1.23] follows from [1.22], since they each are equivalent to

SOLUTION OF QUADRUPLE SERIES EQUATIONS Multiplying equations [1.1] by (t) $-\left(p+m+(+\frac{1}{2})\right)(t-\alpha)^{(+m-(-1)})$, where m is a positive integer, integrating with respect to t from **P** to ∞ and using [1.18], we get $\sum_{n=1}^{\infty} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum$

$$\sum_{n=0}^{\infty} \sum_{j=1}^{n} a_{ij} \frac{A_{nj}}{\left(\left((+m+ni+p+\frac{1}{2})\right)\right)} \quad (ni+p,(+m) (i,-j) = F_i(i,j)$$
[2.1]

where 0 < (< y),

where $\mu + m > \upsilon > -1/2$ and

$\mathbf{F} = (@i)((, 0) - (^{((' + 1/2))/(' ('' + m - '('')) \int_{I} (^{t} \infty \mathbb{E} t^{t} (-(p + m + '('' + 1/2)) (t - (2.2)))$

Further, setting $t = \rho$ in [**1.4**], multiplying it by x

$\mathbb{K}(\mathbf{x}^{\dagger}\mathbf{2} - (\mathbf{^{\dagger}2}))^{\dagger}(\mathbf{^{-}-^{-}(\mathbf{^{-}-1)} e^{\dagger}(\mathbb{K} - \mathbf{x})^{\dagger}\mathbf{^{2}/4})$, integrating with respect to x from ξ to

∞ and applying [**1.20**], we obtain

Where e^{ij} are the elements of the matrix $\begin{bmatrix} b_{ij} \end{bmatrix} \begin{bmatrix} c_{ij} \end{bmatrix}^{-1}$.

where
$$s > m > -\frac{1}{2}$$
 and

$$i = 1, 2, \dots, s$$
. [2.4]

Now, multiplying [2.1] by ((2((+ + m) - 1) and applying the operator $(d()^2)^m$

We see in view of [1.13] that

$$\Sigma_{\downarrow}(\mathbf{n} = \mathbf{0})^{\uparrow} \infty \overset{\text{\tiny (intersection of the section of t$$

Where

$$H_{\bullet}(@i)("(","(") = (^{\dagger}(1 - 2"(") ((d^{\dagger}2))/ \mathbb{I}d(\mathbb{I}^{\dagger}2)^{\dagger}m [(^{\dagger}(2("(" + m) ((d^{\dagger}2)/ \mathbb{I}d(\mathbb{I}^{\dagger}2))/ \mathbb{I}d(\mathbb{I}^{\dagger}2)^{\dagger}m [(d^{\dagger}(2("(" + m) ((d^{\dagger}2)/ \mathbb{I}d(\mathbb{I}^{\dagger}2))/ \mathbb{I}d(\mathbb{I}^{\dagger}2)]]$$

and d^{ij} are the elements of the matrix $[b_{ij}][a_{ij}]^{-1}$

The left hand sides of [2.5], [1.2], [1.3] and [2.3] are now identical and an application of the orthogonality relation [1.9] yields the solution of the equations [1.1], [1.2], [1.3] and [1.4] in the form:

$$\sum_{j=1}^{s} \mathbf{e}_{i_{j}} + \mathbf{h} \int^{\left(W_{(n_{1}+p, (\vec{u}), Q^{i_{s}}(\vec{u}), Q^{i_{s}}(\vec{u})), \mathbf{l} \right)} \mathbf{I}$$

$$[2.7]$$

where, Hi (ξ,ρ) and Gi (ξ,ρ) are the same as defined by [2.6] and [2.4] respectively and dR(ξ) is defined by [1.10] and f^{ij} are the elements of the matrix $[b_{ij}]^{-1}$.

Using the relation [1.8] and setting

$$\mathbf{B}_{n} = \mathbf{A}_{n} (-1)^{n+p} 2^{2(n+p)} (n+p)!$$
, we find that the equations [1.1], [1.2], [1.3] and [

1.4] transform into

$$\sum_{n=0}^{\infty} \sum_{j=1}^{s} a_{ij} \frac{B_{nj} t^{ni}}{\left(\left(\left(+\frac{1}{2}+ni+p\right) L_{ni+p}^{\left(\left(-\frac{1}{2}\right)} \left(x^{2}\right)\right) = t^{-(j)} f_{i}(x,t), \quad 0 < x < y, \quad [2.8]$$

$$\Sigma_{\downarrow}(\mathbf{n}=\mathbf{0})^{\uparrow} \infty \overset{\text{\tiny def}}{=} \mathbb{I} \Sigma_{\downarrow}(\mathbf{j}=\mathbf{1})^{\uparrow} s \overset{\text{\tiny def}}{=} \mathbb{I} \mathbf{b} \bullet (@\mathbf{i} \bullet (@\mathbf{j})) \mathbb{I} (B_{\downarrow}(\mathbf{n} \bullet (@\mathbf{j})) \mathbb{I} t)^{\uparrow} \mathbf{n} \mathbf{i}) / ("("+1 [2$$

.9

]

$$\begin{split} \boldsymbol{\Sigma}_{i}(\mathbf{n}=\mathbf{0})^{\uparrow}\boldsymbol{\omega} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{j}=\mathbf{1})^{\intercal} \boldsymbol{s} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{0})^{\uparrow} \boldsymbol{\omega} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{j}=\mathbf{1})^{\intercal} \boldsymbol{s} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{0})^{\uparrow} \boldsymbol{\omega} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{j}=\mathbf{1})^{\intercal} \boldsymbol{s} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{0})^{\uparrow} \boldsymbol{\omega} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{j}=\mathbf{1})^{\intercal} \boldsymbol{s} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{0})^{\uparrow} \boldsymbol{\omega} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{1})^{\intercal} \boldsymbol{s} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{0})^{\uparrow} \boldsymbol{\omega} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{0})^{\uparrow} \boldsymbol{\omega} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{0})^{\uparrow} \boldsymbol{\omega} \overset{\text{\tiny def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{0})^{\intercal} \boldsymbol{\varepsilon} \overset{\text{\scriptstyle def}}{=} \mathbf{I} \boldsymbol{\varepsilon} \overset{\text{\scriptstyle def}}{=} \mathbf{I} \boldsymbol{\Sigma}_{i}(\mathbf{0}=\mathbf{I} \boldsymbol{\varepsilon} \overset{\text{\scriptstyle def}}{=} \mathbf{I} \boldsymbol{\varepsilon} \overset{\text{\scriptstyle def$$

Where, $t \in 0$, and their solution is given by

(² 4())H_i((, ()dR(()))

 $+ \int_{\mathbf{I}} y^{\dagger} z = t^{\dagger} (\mathbb{I} - ("(" \mathbb{I}^{\dagger} 2/4" (")) \mathbb{I} L_{\mathbf{I}}(ni + p)^{\dagger} (("(" - 1/2)) ((!2/4()))^{\dagger} ("(@i)))^{\dagger} ((!(@i)))^{\dagger} ((!(" - 1/2)))^{\dagger} ((!(! - 1/2)))^{\dagger} (($

+ $\int_{I} z^{\dagger} h = [e^{\dagger} (I - ("("] ^{2}/4" (")) L_{1}(ni + p)^{\dagger} (("(" - 1/2)) ((^{2}/4))] (u(@i)("(","(")) dR(())) + \sum_{i} (j = 1)^{\dagger} s = Ie^{i} (@iu(@j))] \int_{i} h^{\dagger} (= Ie^{\dagger} (I - ("("] ^{2}/4" (")) L_{1}(ni + p)^{\dagger} [2.12])$

Where Hi (ξ,ρ) , Gi (ξ,ρ) and dR (ξ) are the same as defined by [2.6], [2.4] and [1.10].

The solution of simultaneous quadruple equations involving generalized Languerre polynomials can be obtained independently by the above procedure.

REFERENCE:

- Erdelyi, A.: Higher Transcendental Functions, Vol. II, McGraw Hill, New York, (1953).
- Erdelyi, A.: Tables of Integral Transforms, Vol. II, McGraw Hill, New York, (1954).
- Haimo, D.T.: Expansions in terms of generalized heat polynomials and their Appell transforms, J. Math. Mech., 15, pp. 735-758, (1966).
- Rosenbloom, P.C. and Widder, D.V.: Expansions in terms of heat polynomials and associated functions, Trans. Amer. Math. Soc. 92, pp. 220- 266, (1959).